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Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation study
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Inspired by recent claims that compounds composed of V-shaped molecules can exhibit the elusive
biaxial nematic phase, we have developed a generic simulation model for such systems. This contains the
features of the molecule that are essential to its liquid crystal behavior, namely the anisotropies of the two
arms and the angle between them. The behavior of the model has been investigated using Monte Carlo
simulations for a wide range of these structural parameters. This allows us to establish the relationship between
the V-shaped molecule and its ability to form a biaxial nematic phase. Of particular importance are the criteria
of geometry and the relative anisotropy necessary for the system to exhibit a Landau point, at which the biaxial
nematic is formed directly from the isotropic phase. The simulations have also been used to determine
the orientational order parameters for a selection of molecular axes. These are especially important because
they reveal the phase symmetry and are connected to the experimental determination of this. The simulation
results show that, whereas some positions are extremely sensitive to the phase biaxiality, others are totally

blind to this.
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I. INTRODUCTION

In 1970, Freiser showed that deviations from cylindrical
symmetry of mesogenic molecules should result in the for-
mation of a biaxial nematic phase, in addition to the conven-
tional uniaxial nematic [1]. The molecular shape considered
by Freiser was lath-like, in keeping with the elongated struc-
tures of molecules known, at the time, to constitute nemato-
gens. Subsequently, more exotic shapes formed by fusing
rods and discs were proposed as likely candidates for the
formation of a biaxial nematic [2]. Several studies of the
nematic phases formed by such target molecules have re-
ported their biaxiality [3], but it would seem that none of
these claims to have found a thermotropic biaxial nematic
are correct [4]. Indeed, theory predicts that the biaxial nem-
atic phase can exist only over a very narrow range of mo-
lecular biaxialities before it is lost by the sample freezing or
by the formation of a smectic phase [5].

An alternative strategy with which to create biaxial
molecules is to link two rod-like arms to produce a V-shaped
molecule. The nematic phase behavior of such a molecular
structure has been investigated with two quite different
models using different theoretical approaches: one based
on repulsive interactions with a bifurcation analysis [6] and
the other using a continuous potential described by a molecu-
lar field approximation [4]. Both predict the formation
of uniaxial and biaxial nematic phases. In particular, for
both theoretical models [4,6], in which the mesogenic arms
are equivalent, the Landau point, at which the isotropic phase
undergoes a transition directly to the biaxial nematic, is
predicted to occur when the link between the arms is at
the tetrahedral angle. Such theoretical predictions have
been only partly supported by a limited number of computer
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simulation studies of bent, hard spherocylinders [7,8].
These simulation models tend to exhibit a uniaxial nematic
phase when the angle is large with the density at the
N-I transition decreasing with the increasing angle. The
simulations for bent molecules with shorter arms [7]
also reveal the formation of pairs of molecules locked to-
gether when the angle between the arms of the V-shaped
molecule is smaller than 120°; this is found to preclude
the formation of liquid crystal phases directly from the iso-
tropic phase. The formation of such pairs is not accounted
for in the theories and these predict a significant variation in
the phase behavior from that observed for the hard sphero-
cylinder model. For V-shaped models with long thin arms
(where each arm has an aspect ratio of over 5:1 [8]), the
biaxial nematic phase is not observed, presumably because
of the stability of smectic phases in hard spherocylinder sys-
tems which intervene before the minor axis undergoes an
orientational transition.

At an experimental level, there has been considerable
interest in the liquid crystal phases formed by V-shaped mol-
ecules since Niori ef al. [9] found that they exhibit unusual
smectic phases with ferroelectric and antiferroelectric
properties. Unfortunately, such materials do not usually ex-
hibit nematic phases and so it was not possible to test the
theoretical predictions for the biaxial nematic phase. How-
ever, Samulski and his colleagues [10] had been preparing a
range of V-shaped molecules to explore the extent to which a
molecule might deviate from linearity and still retain its
liquid crystallinity. Many of the V-shaped molecules which
they prepared do exhibit nematic phases and a more recent
example [11] showed an optical texture with two brush
patterns. This optical texture has been claimed [12] to indi-
cate a biaxial nematic phase but, as Dingemans and Samulski
[10] had noted earlier, results from a range of techniques
are needed to demonstrate unambiguously the biaxiality of a
nematic phase. Four years later, the evidence for a biaxial
nematic was to emerge based on a range of techniques
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including deuterium NMR spectroscopy [13] and x-ray
scattering [14]. The V-shaped molecules studied by Samulski
and his colleagues are symmetric in that both arms are iden-
tical. Lehmann and Levin [15] have also obtained some
evidence for the possible biaxiality of the nematic phase
formed by a symmetric V-shaped molecule, but with lateral
chains on the arms to lower the melting point. In addition,
Yelamaggad et al. [16] have investigated the phase behavior
of a V-shaped molecule, but this is nonsymmetric with two
very different arms, one of which contains a flexible spacer.
Optical measurements also suggest that the nematic phase
could be biaxial.

In designing V-shaped molecules that should exhibit
the elusive biaxial nematic phase, from the theoretical point
of view there are two prime parameters that might be thought
to control the phase behavior. One is the angle between the
two arms and the other is the relative anisotropy of these
arms. When the V-shaped molecule is symmetric, different
theories agree that the optimal biaxiality is obtained when
the angle adopts the tetrahedral value [4,6]. However, the
variation of the phase behavior with the angle when the
anisotropies of the two arms are inequivalent has not yet
been explored. This could be of special importance because
when the mesogenic arms are equivalent, the observation of
a biaxial nematic is predicted to require that the angle lies
within a very narrow range centered on the tetrahedral value
[4] and this would appear to rule out many of the central
linking groups for possible real biaxial target molecules [10].
To help understand the structure of a V-shaped molecule and
its ability to form a biaxial nematic phase, we have devel-
oped a simple model that is clearly related to the structure of
real V-shaped molecules. The phase behavior of the model
together with certain key properties of the nematic phases
have been determined using Monte Carlo simulations. In par-
ticular, these properties were determined to explore the opti-
mal measurements which could be made in experiments to
determine the symmetry of the nematic phases formed in real
mesogens.

The layout of this paper is the following. In Sec. II, the
model is described together with the Monte Carlo simula-
tions used to investigate its properties. The results of the
simulations are given in Sec. III, where they are compared
with theory and the few measurements made on the phases
of real V-shaped molecules. Our conclusions are presented in
Sec. IV.

II. THE MODEL AND SIMULATIONS

In order to explore the phase behavior of V-shaped mol-
ecules as a function of both the angle and the nonsymmetry
in the anisotropies of the arms, we have constructed a simple
model based on the Lebwohl-Lasher potential [17]. In their
lattice model, designed to investigate the behavior of
uniaxial nematic phases, uniaxial molecules on neighboring
sites (i and j) of a cubic lattice interact via the purely aniso-
tropic potential

U;j=— €Py(cos B;;) = — €P,(u; - 1)), (1)

where € is an energy scaling parameter, u; iS a unit vector
describing the orientation of the uniaxial molecule at site i,
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Bij is the angle between the symmetry axes of the molecules,
and Pz(x)=5x —% is the second Legendre function. The
model exhibits a first order transition between an orientation-
ally ordered and an orientationally disordered state as the
temperature is varied; it has thus become a simple prototype
model for testing theories of ordering in nematic phases, es-
pecially as some of the properties found for real nematogens
are well predicted by this simple model [18]. To represent
V-shaped molecules, we use a simple extension to the
uniaxial model in that each lattice site can host two rather
than one mesogenic unit. Each molecule, consisting of two
rods of type A and B joined at a fixed angle, interacts with
the six nearest neighbor molecules on the cubic lattice, as in
the Lebwohl-Lasher model. The potential between two iden-
tical, neighboring molecules can thus be written as a sum
over all distinct pairs of rods

U=- 3 S

a=A.B B=A.B

a,BP2 cos lgaﬂ) (2)

in which the indices a and B run over the two rods in
molecules i and j, respectively. Note that the angle B,z is
between rod « in molecule i and rod B in molecule j, so
that B4p# Bps- For symmetric molecules, the anisotropy
in the interactions for each arm is the same and we have
€4 = €45=€pp. For nonsymmetric molecules, the anisotropy
in the interactions for a pair of rods of type A is different
to that for a pair of type B (i.e., €44 # €gp) and, for the
mixed interaction, we use a Berthelot-like combining rule
€1p=€ps=1/(€44€pp) [19]. To reduce the number of param-
eters in the model, it is convenient to introduce a scaling
parameter for the energy. To do so, we scale the potential by
€x4 and introduce € =€,/ €44=1/(€pp/ €44). The temperature
is also scaled in the same way, so that T"=kgzT/ €,44. Thus, the
two variable parameters in the model are 6, the fixed angle
between the two arms, and €', which is related to the ratio of
the anisotropies in the interactions of the two arms of the
V-shaped molecule. We note that, since the arms are labeled
arbitrarily, the labels may be switched, and so we expect a
symmetry in the phase diagram between € and 1/€", with a
simple scaling resulting for the transition temperatures. We
should point out that, due to the symmetry of the interactions
in this lattice based model, that there is an equivalence be-
tween the angle € and 180°-6, and so we have used the
unique range of angles from 90° to 180°. It would, of course,
be possible to use an off-lattice model to investigate the ef-
fect that the use of nonsymmetric arms in a V-shaped mol-
ecule has on the phase diagram. However, the use of a lattice
model to do this has a number of advantages. Only a very
limited number of simulations can be performed if an off-
lattice model is used. For example, so far only two very
limited studies have been performed for symmetric V-shaped
molecules with fixed aspect ratios used for the arms. To de-
termine the full phase diagram for symmetric molecules, a
more in-depth study varying both the aspect ratio of the arms
and the angle would need to be performed, a two-variable
problem that would require a large computational resource to
complete. To investigate the influence of nonsymmetry in the
arms, a third variable, related to the difference in the length
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of the arms, would need to be included in the model and
would massively increase the computational power neces-
sary to investigate fully any changes in phase behavior when
the arms are changed. In this respect, the spherocylinder
model and other possible off-lattice models are different to
the lattice model already described, where the energy scaling
parameter of one arm can be eliminated by using it as a
scaling variable. For the spherocylinder model, even assum-
ing the same fixed diameter for the two arms, three variables
are still required to specify the model completely, namely the
angle and the lengths of the two arms; doubling the length of
both arms would lead to a different model. However, in the
simple lattice model described, only two parameters need to
be varied and not three, as necessary for the off-lattice mod-
els. Moreover, since lattice models are computationally
cheap compared to off-lattice models, the large number of
simulations necessary when varying two parameters is not
prohibitive and so the problem is tractable. The final reason
for using a lattice model is more subtle and is based on the
fact that liquid crystal models composed of rotating particles
at fixed lattice sites cannot, by their very nature, change in
their translational structure. This can be used to our advan-
tage since we may probe regions of a phase diagram where
off-lattice systems may form a smectic phase or crystallize,
thus blocking the phase of interest. Indeed, this seems to be
the case for the long thin symmetric arm cylinder model [8]
where the uniaxial nematic phase is observed at higher
angles and gradually becomes less stable with respect to the
isotropic phase, and so is shifted to high densities, as the
angle is decreased. However, the smectic phases start to in-
tervene at densities before the second molecular axis starts to
order and so the Landau point and biaxial nematic phase is
not observed. Of course, for real systems, it may be that
finding the biaxial nematic phase is still a difficult task and
that the lattice model results cannot simply be mapped onto
the phase diagram of real molecules. However, the simple
lattice model is still useful because we can investigate
whether it is possible to extend the range of the biaxial nem-
atic phase with respect to the less ordered uniaxial nematic
and isotropic phases by varying the nature of the arms of the
molecule without having to worry about the more ordered
phases hiding the effect we are trying to understand. If the
biaxial nematic range is found to be more accessible in cer-
tain regions of the phase diagram, then this leads to a more
appropriate set of parameters to investigate for real systems
or further off-lattice models, rather than aiming for the theo-
retically predicted V-shaped molecules bent at the tetrahedral
angle with symmetric arms.

Simulations were performed for a number of parametriza-
tions of the V-shaped molecule model to map out the phase
diagram as a function of both € and 6. In the first series, the
phase behavior for symmetric V-shaped molecules (i.e.,
€ =1) was explored as a function of the angle 6 to make
comparisons with previous molecular field predictions for
the same model [4]. These simulations were then extended to
nonsymmetric V-shaped molecules; thus, the phase dia-
grams, as_ functions of the angle 6, were constructed for
€=12,13, 2, and \5. A second series of simulations were
run in which 6 was fixed and € was varied. The simulations
were initially performed on small systems of N=10? lattice
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sites to obtain approximate transition temperatures, then
appropriate simulations were repeated with a large system
of N=40° lattice sites to locate the transitions more accu-
rately. These larger systems were also used to evaluate
the order parameters necessary for the characterization of the
phases as well as for comparison with experiment. Monte
Carlo trials were made by selecting a site i at random and
then (i) randomly selecting one of the two rods at this site
and randomly changing its orientation, subject to the con-
straint on the angle 6 between the two rods or (ii) randomly
changing the orientation of both rods at site i, again subject
to the angle constraint on 6; these trials correspond to (i) a
random rotation about a random rod axis and (ii) a random
rotation about a random axis, respectively. Equilibration runs
were typically of 20 000—30 000 cycles (where 1 cycle=N
trials) and were followed by a production run of
20 000 cycles, although longer runs were used near transi-
tions where appropriate.

The orientational order of a rigid biaxial molecule in a
biaxial phase can be characterized at the second rank level by
the Cartesian supermatrix S with elements [20,21]

Sop ={(Blaalps = 8.y Opp)/2). (3)

Here the subscripts a and b denote the molecular axes, the
superscripts A and B indicate the laboratory axes, [, is the
direction cosine between the molecular axis a and the labo-
ratory axis A, &, is a Kronecker delta function, and the
angular brackets denote an ensemble average. The properties
of this supermatrix are described in more detail in Appendix
A. All that we need to note here is that when the principal
axes of the molecule and the phase are known, the nonzero
elements of S are S‘;‘f where a is x, y, or z and A is X, Y, or
Z. The symmetry axes for the symmetric V-shaped molecules
are known; these are (i) the vector joining the two ends of the
molecule, (ii) the axis bisecting the interarm angle, and (iii)
the axis orthogonal to the molecular plane. It is also of inter-
est to calculate the ordering matrix for the axes parallel to the
arms since, as we shall see, these are of relevance to the
experimental determination of the phase symmetry. For the
nonsymmetric V-shaped molcules, that is, ones with different
anisotropies for the two arms, only the axis orthogonal to the
plane formed by the two mesogenic arms is a principal axis.
Thus, for these molecules, we only calculate the order pa-
rameters of the two arms with respect to the directors appro-
priate to the phase.

The orientations of the directors, that is, the principal axes
of the phase, are not known a priori during the Monte Carlo
simulation and indeed change from configuration to configu-
ration as they are not constrained in any way. To determine
these, we use the procedure described by Vieillard-Baron
[22]. In this, a Q tensor is defined for axes set in the mol-
ecule, which is analogous to a diagonal matrix of S. Thus,
for an axis a,

Qo ={Blaalyp = S45)12), (4)

where now the average is taken over a configuration, and A
and B denote an arbitrary laboratory frame X', Y’, and Z'.
The matrix is then diagonalized and the resulting eigenvec-
tors give the orientations of the directors. The eigenvalues,
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Qﬁf (A=X, Y, or Z), are the order parameters of axis a with
respect to the directors. For a uniaxial phase, the largest or-
der parameter, which is chosen to be denoted Q%Z, is associ-
ated with the unique director along Z and the other two, fo
and Q! will be equal to —%fo within the simulation error.
For a biaxial phase, the three eigenvalues should usually
be different; however, for certain molecular axes, they
need not be [23]. The order parameters are averaged over
many configurations, and in order to maintain a consistent
labeling of the principal laboratory axes, we have adopted
the procedure proposed by Hashim et al. [24]. In this, it is
assumed that the orientations of the directors change by only
small amounts from one configuration to the next. Conse-
quently, the axes are labeled so that the differences in the
orientations of the three principal axes of the phase for a
particular configuration with respect to the previous one are
minimal.

III. RESULTS AND DISCUSSION

We begin with the phase behavior of our model nemato-
gen and, in particular, with how the transition temperatures
vary with the parameters defining the V-shaped molecule,
namely, € and 6. The phases were identified from the
orientational order parameters determined for the molecular

symmetry axes and for axes parallel to the arms of the
molecule. The transition temperatures were evaluated from
the temperature dependence of these. The variation of the
transition temperatures with the angle between the me-
sogenic arms is shown in Figs. 1(a)-1(d) for different values
of €.

The phase diagram for the symmetric V-shaped molecule
(€'=1) is shown in Fig. 1(a). The smallest interarm angle
investigated was 90° and for this fixed angle, the interaction
tensor for the molecule is cylindrically symmetric about the
axis orthogonal to the arms (see Appendix B) and so may be
considered as disk-like. The system forms the isotropic and
uniaxial nematic phase. We denote the latter with the con-
ventional Ny, notation to indicate the disk-like nature of the
molecules. Increasing 6 does not change the N~/ transition
temperature, T,\FU 1, at least initially. However, a biaxial nem-
atic (Np) as well as the uniaxial nematic is formed when the
angle is larger and the Np-N, transition temperature does
increase quite rapidly with increasing angle. When the
V-shaped symmetric molecule is in the tetrahedral geometry
(6=109.47°, cos™! 0=—%), the isotropic phase is found to un-
dergo a transition directly to the biaxial nematic phase. The
appearance of this Np-I transition or Landau point at the
tetrahedral geometry is in agreement with the prediction of
molecular field theory for the symmetric model [4]. As 6
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increases further from 109.47°, the V-shaped molecule be-
comes more rod-like and again exhibits a uniaxial nematic
phase; this is denoted by Nj,. Increasing the interarm angle
leads to an increase in the N;-/ transition temperature, TN+U I
Conversely, as the molecule becomes more uniaxial, so the
stability of the biaxial nematic phase is diminished and so
TNBND decreases and thus the uniaxial nematic range in-
creases. It is clear from these results that the transition to
the biaxial nematic phase for 6=140°, the angle estimated
for the symmetric V-shaped molecules studied by Samulski
and his colleagues [13], is predicted to occur only after a
uniaxial nematic phase with a comparatively long tempera-
ture range. In contrast, the real V-shaped molecule appears to
undergo a transition to the biaxial nematic phase directly
from the isotropic phase or from a uniaxial nematic with a
range of just a few degrees. It would seem, therefore, that
either this model does not include the anisotropic molecular
interactions responsible for the biaxial nematic phase in the
real system or that the experimental assignment of the phase
is in error.

We now consider how the phase diagram, with its
dependence on 6, changes with the difference in the aniso-
tropy of the two arms: that is, for an increasingly nonsym-
metric V- shaped molecule. The phase diagram shown in
Fig. 1(b) is for € = V2, which would correspond to a factor of
2 in the transition temperatures for the two separate arms
(see Appendix B). Perhaps the most obvious change in
the phase diagram in comparison with that in Fig. 1(a) is the
increase in transition temperatures, although this results
simply from an increase in the molecular anisotropy, which
in turn results from the fact that €,, scales the temperature
and € =e€yp/€,, is larger than unity. Of course, given
the self-duality of the model, a similar phase diagram albeit
with different temperature scaling would be obtamed if we
used a value for € less than unity (here € —1/\2) There
are, however, more subtle and more interesting changes.
First, we see that when the arms are orthogonal, a biaxial
nematic phase has appeared; this was absent for € =1.
Second, there is a small shift, of only a few degrees to about
107°, in the interarm angle at which the Landau point occurs.
Note that this resulting shift is apparently very small despite
the large difference in the nature of the two arms; we
recall that, if the mesogens A and B forming the V-shaped
molecules were studied separately, the nematic-isotropic
transition temperature for arm B would be double that for
arm A.

The quantitative changes in the phase dlagram are found
to be even more dramatic for increasing €". For €' = =13, the
Landau point occurs at about 102° and, for the case when the
arms are orthogonal, the biaxial nematic range is widened
further; thus, the ratio Ty VY, / TAF, increases to about 0.44, in

comparison to the value 0.17 found for €'=\2. As € is in-
creased to 2 [see Fig. 1(c)], the Landau point is shifted fur-
ther across the phase diagram to #=90°. As the interarm
angle is increased from 90°, so the molecular biaxiality is
reduced and the biaxial nematic range becomes smaller
while the uniaxial nematic range grows as before. Thus, we
observe a significant shift in the angle at which the Landau
point occurs of almost 20° from the value of 109.47° found
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for the symmetric V-shaped molecule by changing the rela-
tive nature of the arms. However, we should note that to
achieve this shift, the arms in the nonsymmetric molecule
must have considerably different anisotropies and that their
individual nematic-isotropic transition temperatures would
need to differ massively by a factor of 4. Note also that the
Landau point is found to be shifted only to lower angles
when the relative anisotropy of the arms are changed; thus,
using two different arms cannot shift the Landau point to
angles larger than the tetrahedral angle.

When the relative anlsotroples of the mesogenic arms is
increased even further to € =15, the variation in the phase
behavior again undergoes a dramatic change [see Fig. 1(d)].
Now we see that the system does not exhibit a Landau point,
but that the biaxial nematic phase, where it exists, always
follows the uniaxial nematic. The N}, phase has the narrow-
est range when the arms are orthogonal and increases as 6
increases, which is to be expected as the anisotropy of the
V-shaped molecule increases and its biaxiality decreases (see
Appendix B).

We have also investigated the phase behavior of the
model as a function of the relative anisotropy of the arms for
fixed values of the interarm angle. In Fig. 1(e), we show the
variation of the phase behavior with € for a V-shaped mol-
ecule with #=105°. When € is zero, the molecule is uniaxial
and the model mesogen is identical to the Lebwohl-Lasher
model [17]. The isotropic phase undergoes a transition to a
uniaxial nematic, NJ{, As € increases, that is, the anisotropy
of the second arm grows, a biaxial nematic phase appears in
the phase diagram, and we observe that TN+ ; falls and TN Y

increases. There is a Landau point when € is approxnnately
0.64. Note that the Landau point does not occur for the sym-
metric V-shaped molecule (¢'=1), because this would re-
quire an interarm angle of 109.47°. Thus, it would seem that
to compensate for a shift in the interarm angle of less than 5°
requires a change in € from 1 to about 0.64. This difference
is consistent with our previous results for €'=2 and 3.
Given the self-dual nature of the model, we expect and ob-
serve a second Landau point at € =1.56. This value lies be-
tween V2 and 3 and, as we have already seen, the Landau
points for these two values of € occur at 107° and 102°,
respectively; the consistency with earlier results is clear be-
cause 105° is located in this region. The self-dual nature of
the model is also apparent from the phase diagram in Fig.
1(e) in that as € increases from the value at the first Landau
point, the relative stability of the biaxial nematic (compared
to that of the uniaxial nematic) decreases to a minimum at
€ =1 and then increases until at € of about 1.56 the second
Landau point occurs beyond which the Np-N7, transition tem-
perature again falls. In contrast, over the same € range, the
uniaxial nematic-isotropic transition temperature increases
because of the growth in the anisotropy of the second arm of
the V-shaped molecule. The appearance of the phase diagram
does not change significantly on increasing the interarm
angle to 107° as can be seen from the results shown in Fig.
1(f). The most apparent change is in the values at which the
Landau points occur. Thus, the relative anisotropy at the first
Landau point is about 0.7 and at the second it is its recipro-
cal, namely 1.4. These values still differ somewhat from the
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value of unity found for the symmetric V-shaped molecule
with an angle fixed at 109.47°. This significant difference in
€ for such a small difference in angle shows just how sen-
sitive the dependence of € is on # when this is close to the
tetrahedral value. In contrast, when @ is close to 90°, changes
in 0 have a relatively small effect on the value of € needed
to obtain a Landau point (see also Appendix B, Fig. 6). In-
deed, increasing the value of the fixed angle from 105° to-
ward the tetrahedral angle does not change the form of the
phase diagram. Initially the two Landau points only approach
each other gradually on increasing the angle up to about
108°, then more rapidly after this until they converge at a
single point, as we expect, for §=109.47°. For values of the
angle above the tetrahedral angle, no Landau point is ob-
served; this is entirely consistent with the results in Figs.
1(a)-1(d) in that no Landau points occur in these phase dia-
grams above the tetrahedral angle for any values of €', as
noted earlier, and also with the analytic result in Appendix B
(see Fig. 6).

The observation that different parametrizations of the
model V-shaped molecule exhibit Landau points suggests
that the parameters, € and 6, might be mapped onto a single
measure of the molecular biaxiality. In addition, it might
be expected that the temperature could be scaled with a
factor based on both € and 6. These views are supported by
the molecular field theory for a nematic formed from flexible
molecules where different segments in the molecule interact
with the molecular field aligned along the director [25].
It was subsequently shown that the sum of segmental
interactions could be written as a single site potential where
the interaction tensor depends on the molecular geometry
and the strength of the segmental interactions [26]. We
expect, therefore, that this will also be the case for the pair
potential composed of segmental interactions, and this
does indeed prove to be the case, as we shall see. The de-
tailed derivation of the relationship for symmetric and non-
symmetric V-shaped molecules is given in Appendix B,
where we show that the temperature scaling parameter is
given by

3 ) 1 172 (2
Uro0 = S~ €44 (1+6*)+3(1+E*2+4€*<COSZ 0-5))

32
&)
and the molecular biaxiality by
1 172
(1+€)- (1 + e"‘2+4e"‘<cos2 60— 5))
= 1)\ 12
(1+€)+ 3(1 +e+ 4:5*(0052 0- 5))
(6)

The parameters u,y, and N occur in the second rank single
site pair potential proposed by Luckhurst et al. [27] and used
in the first simulation of a biaxial nematic phase [28].

The relationships given in Egs. (5) and (6) have been
applied to all the data for the transition temperatures of the
V-shaped molecules presented in Fig. 1. The resulting scaled
transition temperatures, kgT/u-qo, are given as a function of
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FIG. 2. The phase diagram for all the V-shaped molecules stud-
ied as a function of the composite biaxialty parameter \ [see Egs.
(5) and (6)]. Color key: white points, € =1; light grey, € =12; dark
grey, € =2; black €'=1/5.

the molecular biaxiality A in Fig. 2. It is immediately appar-
ent that the behavior of all of the V-shaped molecules is
contained in a common phase diagram, irrespective of the
angle between the arms and their relative anisotropy. The
form of the dependence of the phase behavior on A\ is con-
sistent with the simulation results of Biscarini et al. [29] for
the single site potential. At the uniaxial limit, A=0, the arms
of the V-shaped molecule are parallel, and this corresponds
to a rod-like molecule. The only ordered phase that this
forms is a uniaxial nematic, and this is denoted by the N}}
labeling on the phase diagram. The Landau point occurs
when N=1/v6 in keeping with the predictions of the molecu-
lar field theory treatment for the single site model [30,31].
For other values of the biaxiality, the uniaxial nematic ap-
pears between the isotropic and biaxial nematic phases. The
T+, transition temperature is found to be essentially inde-
pendent of N. This is approximately in keeping with molecu-
lar field theory, although this predicts a slight increase in
TNE ; with increasing molecular biaxiality below the Landau
point [30,31]. In contrast, the Np-N7, transition temperature
increases rapidly with increasing N up to the Landau point.
The regime where X\ >1/16 corresponds to the angles less
than the tetrahedral value for the symmetric V-shaped mol-
ecule and so corresponds to a disk-like molecule; we have,
therefore, denoted this N, in Fig. 2. In this regime, the
NI transition temperature increases rapidly with A, while
the biaxial nematic decreases in stability. The dependence of
TNB"T/ and TArU ;on N is in qualitative agreement with the
predictions of the molecular mean field theory [30,31]. We
note that even though a common phase diagram exists and
all values of € and 6 can be mapped on to this, not all values
of N\ necessarily exist for the two-parameter model in which
either € or @ are a priori fixed. For example, the phase
diagram for € =2 [Fig. 1(c)] maps on to the left hand side of
the phase diagram in Fig. 2. A disk-like N, phase was not
observed for this parametrization and, accordingly, none of
the points map onto the right hand side of the phase diagram;
this, of course, implies that there is no backward mapping for
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FIG. 3. The temperature dependence of the principal components of the ordering tensor for four axes set in a symmetric V-shaped
molecule for three values of the interarm angle 6. A=X, Y, or Z; a=p, x, y, or z.

A>1/6 onto Fig. 1(c). This, in turn, implies that not all
values of A may be accessible if a particular central linking
group for the molecule (i.e., ) or similarly a particular pair
of arms (i.e., €) is chosen for the target molecule. To aim for
a molecule with a particular value of \, there should be some
flexibility in both the choice of 6 and €.

We now turn to the second rank orientational order pa-
rameters for both the uniaxial and biaxial nematic phases.
We start by illustrating our results for three symmetric

V-shaped molecules, having the following interarm angles:
109.47°, for which a Landau point is observed, and 108° and
110°, which are located either side of the Landau point in
Fig. 1(a). The phase orientational order parameters have been
determined for four different axes set in the molecule. One
axis (p) is parallel to the mesogenic arm and the other three
(xx, y, and z) are parallel to the principal axes of the molecule.
Note that, for the axis parallel to the arm, both arms are used
to determine the order parameters, since these are equivalent
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for the symmetric molecule. For the principal axes, these are
determined by the symmetry of the V-shaped molecule and
are indicated as x, y, and z in Fig. 3: axis x is orthogonal to
the plane containing both arms, axis y bisects the angle in the
plane containing the arms, and axis z is orthogonal to the
other two, that is, along the long axis of the molecule, de-
fined by joining the two ends. We have chosen to show the
ordering matrices for the individual axes rather than the prin-
cipal second rank order parameters (see Appendix A) be-
cause this permits direct contact with the deuterium
NMR experiments usually taken as the most definitive mea-
sure of phase biaxiality [4]. In these experiments, the
quadrupolar splitting for a deuteron is measured along the
three orthogonal directors and these splittings lead to
the order parameters SCD, SCD, and SéZD for the carbon deu-
terium (CD) bond with respect to the directors. The experi—
ments, therefore, provide the major order parameter, SCD,
and the phase biaxiality SXX Sg) for different axes in the
molecule. Depending on the location of the CD bond, these
two order parameters are related to the four principal order
parameters, but we shall not be concerned with this specific
dependence here (but see Appendix A).

We shall start our discussion with the results for the sym-
metric V-shaped molecule having an interarm angle of 110°
[see Figs. 3(c), 3(f), 3(i), and 3(1)]. As we have seen [see Fig.
1(a)], this forms both uniaxial and biaxial nematic phases. In
the uniaxial nematic phase, for each axis there is a unique
order parameter, SCD, associated with its ordering with re—
spect to the director. The other two order parameters S
and S}, are necessarily the same and equal to — 2 . Thrs
is seen to be the case for all the molecular axes studied
within the uniaxial nematic phase. Thus for SZZZZ [see Fig.
3(f)], there is a small jump in its value at the uniaxial
nematic-isotropic transition at 7°=1.15 and the order param-
eter then grows with decreasing temperature. Its positive
value shows that the molecular z axis tends to align parallel
to the director. The other two order parameters associated
with alignment perpendicular to the director are, naturally,
negative and equal. Consequently, for this value of 6, it is
reasonable to assume that the molecule is behaving as a rod-
like object. The unique order parameters for the x and y axes
[see Figs. 3(1) and 3(i), respectively] are, in contrast, nega-
tive showing that these axes tend to be ordered orthogonal to
the director, as expected. The two associated order param-
eters for the x and y axes are necessarily positive and equal
within the uniaxial nematic region. Finally, the unique order
parameter for the arm axis, which is not a molecular symme-
try axis, is positive but relatively small in comparison to that
for the z axis. This is in keeping with the fact that the order
parameter for the arm is a linear combination of the principal
order parameters

S5 = 872 sin*(012) + 557 cos*(6/2). (7)

At the transition from the uniaxial to the biaxial nematic,
the unique order parameters continue to change continuously
with decreasing temperature. This is in keeping with the sec-
ond order character of this transition predicted by molecular
field theory [30]. The order parameters that are degenerate in
the uniaxial nematic phase split apart in the biaxial nematic
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phase and so there are three different values of the phase
order parameters for each axis. The magnitude of the differ-
ences for these order parameters varies significantly accord-
ing to the molecular axis chosen to define them. The largest
biaxiality in the order parameters is exhibited by the arm
axis. In fact, just below the Np-Nj, transition, one order pa-
rameter SX;( is essentially O so that the other two order pa-
rameters are equal in magnitude, but opposite in sign. In this
case, the relative biaxiality determined by the NMR experi-
ments, namely (S;(;( —S,fpy )/ Slz,lf, is close to its maximum pos-
sible value of unity. This result is in marked contrast to that
found by Madsen et al. [13], where the phase biaxiality of
the arms of the V-shaped molecule, thought to form a biaxial
nematic phase, appears to be very close to 0; however, the
interarm angle of 140° is significantly larger than the values
that we find necessary to yield a biaxial nematic phase. The
x axis provides the next largest measure of the phase biaxi-
ality, especially in the vicinity of the Np-Nj, transition, where
the difference (SXX SYY) is large. However as the tempera-
ture is lowered, the phase biaxiality starts to decrease and is
observed to tend to O as the temperature tends to 0. This
occurs as at low temperature, S“Z tends to unity because the
trace of the tensor vanishes and the most negative order pa-
rameter is —1/2. In other words, both S** and S" must
approach the limit of —1/2, at which point their difference
disappears. Of course, it does not follow that the phase is no
longer biaxial in this limit, but simply that the axis used to
explore the phase symmetry is inappropriate in this highly
ordered limit. The biaxial ordering of the y axis (SXX -S YY) is
relatively large in the vicinity of the N-Nj, transition. How-
ever, as the temperature is reduced, this difference tends rap-
idly to O even before the major order parameter Sf}z has
reached its limiting value of unity. The final molecular sym-
metry axis is z and for this we again see a relatively small
phase biaxiality (SX~S!”) appear at the transition to the
biaxial nematic. This b1ax1a11ty in the order parameters
grows and then decreases tending to the limiting value of O
as the temperature is reduced.

Similar behavior for the order parameters is observed for
the V-shaped molecule with the slightly smaller interarm
angle of 108°, which occurs on the other side of the Landau
point. We note that since the angle 108° deviates more than
110° from the tetrahedral angle of 109.46°, the uniaxial nem-
atic has a slightly wider range for the smaller angle than for
the larger one, and so the exact temperature dependence of
the order parameters will differ for the two models; however,
the behavior of the order parameters is very similar and may
still be compared. The essential difference in the behavior of
the order parameters proves to be in the labeling of the mo-
lecular axes. Thus, the temperature dependence of the order
parameters for axis x when 6=108° matches that for the z
axis when #=110°. This exchange of behavior for the differ-
ent axes suggests that the x axis is the major molecular axis
and, because this is orthogonal to the plane containing the
two mesogenic arms, that the molecule is disk-like; this is
entirely in keeping with earlier remarks about changing from
rod-like behavior on one side of the Landau point to disk-
like on the other. The results also show that the ordering of
the y axis is the same for both angles on either side of the
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FIG. 4. The temperature dependence of the principal components of the ordering tensor for the two mesogenic arms of an orthogonal,
nonsymmetric V-shaped molecule for three values of the relative mesogenic anisotropy € . A=X, Y, or Z; a=p or q.

Landau point. We observe that the order parameters for the
arm axis, again, exhibit the maximal biaxiality of about
unity, as we found for the larger interarm angle. There is,
however, a significant difference in that the single order pa-
rameter in the uniaxial nematic phase is negative, thus, re-
vealing the tendency for the molecules to align orthogonal to
the director, in keeping with their disk-like character. On
entering the biaxial nematic phase, the two small order pa-
rameters, which were equivalent in the uniaxial nematic,
now become dissimilar with one increasing and the other
tending to zero. Thus, the order parameters for the arms of
the two V-shaped molecules differ, to a first approximation,
simply by a change of sign.

We now come to the special case when the angle between
the arms adopts the tetrahedral value, for then the system
undergoes a transition directly from the isotropic to the bi-
axial nematic phase: that is, the system is at the Landau point
in the phase diagram. As with the other two geometries, the
biaxiality in the order parameters is largest for the arm axis.
At the transition to the biaxial nematic phase, one order pa-
rameter remains 0, while the other two grow, essentially con-
tinuously from the transition, in keeping with the second
order character of the Ng-I transition [30]. Since the two
nonzero order parameters are equal and opposite in sign, the
relative phase biaxiality determined from the order param-
eters adopts its maximum value of unity for all temperatures.
The x and z molecular axes are ordered to equivalent extents,
in keeping with the fact that the molecule can no longer be
described as either a rod or a disk. At the transition, the
biaxiality in these order parameters grows, passes through a
maximum, and then decreases with decreasing temperature
until it reaches 0 as the major order parameter tends to its
limiting value of unity. The order parameters for the molecu-

lar y axis, which bisects the angle between the two arms,
exhibit an especially interesting behavior. First, unlike the
order parameters for the other molecular axes, all three order
parameters Sfyx S{}Y and $% tend to 0 on increasing the
temperature with a concave rather than convex curvature.
Second, since two of the order parameters are equal, the
biaxial order parameter is found to be 0 over the entire tem-
perature range of the biaxial nematic phase. Hints of such
behavior are apparent from the results for the same axis in
the two V-shaped molecules in which the angle 6 deviates
slightly from the tetrahedral value. For these, the phase bi-
axial order parameter is seen to vanish over a significant part
of the biaxial nematic range. This extreme and intriguing
behavior found for the y axis emphasizes the considerable
care that needs to be taken when placing deuterons in a mol-
ecule in order to determine the symmetry of a possibly biax-
ial nematic phase.

We have also investigated the behavior of the order pa-
rameters for the case where the V-shaped molecule is non-
symmetric. To study the behavior around the Landau point in
this situation, we use three different parametrizations as be-
fore, this time fixing the angle 6 to be 90° and varying the
relative anisotropies about the Landau point. For molecules
in which the arms are orthogonal, the Landau point occurs
for € =2 [see Fig. 1(c) and Appendix B]. We have, therefore,
studied this value and also two values on either side of the
Landau point: namely, € =1.95 (disk-like) and € =2.05 (rod-
like). As these molecules are nonsymmetric, we only calcu-
late the order parameters for the two arms, but this time do
not average them as for the symmetric case; instead, we de-
fine vectors p along arm A and ¢ along arm B. These are
shown for the three models as a function of temperature in
Fig. 4. As we shall see, the behavior observed is analogous to
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that for the V-shaped molecule with tetrahedral and near tet-
rahedral geometry. This is perhaps to be expected given the
equivalence of the pair potentials for particular geometries
and anisotropies of the V-shaped molecule demonstrated in
Appendix B. In consequence, the comments on the results
for the systems with orthogonal mesogenic arms will be kept
relatively brief.

We shall start with the V-shaped molecule having the
largest relative anisotropy, € =2.05 [see Figs. 4(c) and 4(f)].
This exhibits both uniaxial and biaxial nematic phases. In the
uniaxial phase, the unique order parameter for arm B is posi-
tive, indicating its tendency to align parallel to the director.
Accordingly, arm A tends to be aligned orthogonal to the
director and so its unique order parameter is negative. At the
transition to the biaxial nematic phase, the equivalence of the
remaining pairs of order parameters is removed. For axis B,
the resulting biaxiality in the order parameters (S)q(;( —quy ) is
small, grows slightly, and then decreases to the limiting
value of zero; this is similar to the behavior observed for
the z axis for the symmetric V-shaped molecule with @
=110°. In contrast, the separation of the order parameters
for the A axis is considerable with one order parameter posi-
tive and increasing to unity while the other decreases,
becoming negative and reaches the limiting value of —1/2
at low temperatures. The phase biaxiality, therefore, starts
at zero at the transition, goes through a relatively large
maximum compared to that for arm B, but then decreases to
zero; this is similar to the y axis for the 110° symmetric
molecule.

For the molecule with the slightly smaller anisotropy,
€'=1.95, just less than that needed for the optimum molecu-
lar biaxiality, the results for the order parameters for the
two arms are shown in Figs. 4(a) and 4(d). The results for
the ordering of the arm A is essentially the same for both
anisotropies: in keeping with the similar behavior for the y
axis of both the 108° and 110° symmetric molecules.
However, the order parameters for arm B are quite different
in both the uniaxial and biaxial nematic phases. In the
uniaxial nematic, this arm tends to be aligned orthogonal to
the director because of the change in the total interaction
tensor when € changes from 2.05 to 1.95 (see Appendix B);
thus, the molecule is behaving more like a disk than a
rod. Within the biaxial nematic phase, the biaxial ordering
of arm B increases rapidly at the transition, but then
decreases to 0 at low temperatures. This again contrasts
with the ordering of the equivalent arm when the relative
anisotropy for the arms of the V-shaped molecule increases
just slightly to €' =2.05. The order parameters for the optimal
molecular biaxiality are shown in Figs. 4(b) and 4(e).
The ordering of arm A for this system is identical to that
of axis y for the symmetric V-shaped molecule with the
tetrahedral geometry [see Fig. 3(h)]. In other words, there
is no biaxiality in the ordering for this arm over the
entire range of the biaxial nematic. The ordering of arm B
does exhibit a small phase biaxiality which is comparable
to that of axis z in the symmetric tetrahedral V-shaped
molecule. This again indicates the care that needs to be
taken over where deuterons are placed in the molecule
when using NMR to investigate the symmetry of the phase.
For the symmetric tetrahedal V-shaped molecule, the best
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place to place a CD bond is along the arm axis. In contrast,
if a CD bond is placed along the A arm for the optimal
biaxial orthogonal molecule, no biaxiality in the ordering is
observed.

IV. CONCLUSIONS

Based on the Lebwohl-Lasher model for uniaxial nemat-
ics, we have developed a generic model for the anisotropic
interactions between V-shaped molecules, which is directly
related to their structure. The defining characteristics are
the anisotropies of the two arms and the angle between them.
For the symmetric V-shaped molecule, the phase behavior
is determined solely by the interarm angle. When this
is 109.47°, the tetrahedral angle, the isotropic phase under-
goes a transition directly to the biaxial nematic in agreement
with the prediction of molecular field theory. In addition,
the predicted strong dependence of the stability of the
biaxial nematic phase on the angle when it is close to the
tetrahedral value has been confirmed. The V-shaped mol-
ecule can also be nonsymmetric, which introduces a new
element into the design of compounds capable of forming a
biaxial nematic. The effect of the difference in the anisotro-
pies of the two groups on the phase behavior is to shift the
angle at which the Landau point occurs to lower values.
However, if the relative anisotropy for the arms is greater
than 2, then there is no angle which gives a Landau point and
the biaxial nematic phase necessarily follows a uniaxial
phase.

The model clearly contains three parameters: the anisotro-
pies of the two arms and the angle between them. However,
one of the anisotropies can be used to scale the temperature,
which leaves the relative anisotropy and the interarm
angle to control the phase behavior of the model. It proves
to be possible to combine these two parameters into a
single measure of the biaxiality in the molecular interactions.
In addition, the temperature scaling can also be replaced
by a function of both the interarm angle and their
relative anisotropy. Use of these two parameters allows
all of our results to be presented in a single phase diagram,
identical to that for a single site biaxial potential. The
excellent agreement for all of the V-shaped molecules
studied provides a uniquely accurate version of this phase
diagram. In addition, this can now be used to determine the
phase behavior for any analagous model nematogen
composed of interacting segments. This route is especially
useful for comparing real molecules to the single phase
diagram. While it is relatively easy to estimate the values
of € and 6 for a particular molecule and use the mapping
detailed here to transfer them to the single phase diagram,
it is not so straightforward to consider designing a
molecule with a particular N value without using such a
mapping.

The simulations were also used to explore the orienta-
tional order of the uniaxial and biaxial nematic phases
formed by the V-shaped molecules. The order parameters
needed to do this were defined in terms of various axes set in
the molecule and the directors characterizing the phase. Such
quantities are of special importance in helping to determine
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the symmetry of the phase and so identifying it, either as a
uniaxial or biaxial nematic. For symmetric V-shaped mol-
ecules, the order parameters for the molecular symmetry
axes and the arms were determined. By far the best indicator
of the phase symmetry was found to be the arm axis and for
this, the relative biaxiality in its order parameters was close
to the maximal value of unity. In contrast, the relative biaxi-
ality was found to be zero over much of the biaxial nematic
range when the order parameters for the axis bisecting the
arms was used. Indeed, for the tetrahedral geometry, the bi-
axiality is zero over the entire biaxial nematic range. For the
case of an orthogonal V-shaped molecule with optimal biaxi-
ality (#=90°, € =2), placing the CD bond along the axis of
the arm with higher anisotropy is a reasonable indicator of
phase biaxiality; however, placing the CD bond along the
other arm axis leads to zero biaxiality in the order param-
eters. These results are of special importance for those ex-
perimentalists using deuterium NMR spectroscopy to deter-
mine the phase symmetry, for it shows that extreme care
must be taking in locating the deuterons if this method is to
be used successfully. Finally, we note that the order param-
eters seem to change continuously at the biaxial nematic—
uniaxial nematic transition and at the Landau point, in keep-
ing with the predicted second order character of these
transitions.
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APPENDIX A

The second rank Cartesian supermatrix S used to charac-
terize the orientational order of a biaxial molecule in a biax-
ial phase is defined in Eq. (3). Here we describe some of the
properties of S and propose a particular notation for it. In
general, the supermatrix contains 81 nonzero elements, but
the number of independent elements is just 25. This follows
because the exchange of the direction cosines, /4 and [,
leaves the supermatrix elements unchanged and the proper-
ties of the direction cosines requires that the trace of each
submatrix vanishes. The number of independent components
is clearly significant, but can be reduced if the principal axes
for both the phase and the molecular matrices are known.

This leaves the nine diagonal elements, Sﬁ;“, as nonzero and,

because =,544 and 2,594 both vanish, we are left with just
four independent elements of the ordering supermatrix. In a
simulation, the orientations of the principal axes of the biax-
ial phase can be determined and the molecular principal axes
are usually available from the model potential. In contrast,
the location of both sets of axes for real mesogens presents
experimentalists with a considerable challenge. This is espe-
cially true for the principal axes of the molecule because of
the flexibility of mesogenic molecules and the absence of
symmetry for the conformational states. The use of probe
molecules to explore the phase symmetry presents fewer
problems because rigid probes of high symmetry can be
used.

PHYSICAL REVIEW E 72, 051702 (2005)

The combination of the four independent principal com-
ponents of S to represent the orientational order of a biaxial
molecule in a biaxial phase is given by Dunmur and
Toriyama [21]. They use the following notation:

7z 77 _ 72 XX _ oYY
S=S D=S.-S P=S7-S§

2z yy? 2z

C= (S =5 = (S5 =83 (A1)

The first two order parameters, S and D, are nonzero in both
uniaxial and biaxial phases. They reflect the orientational
order of the molecular axes with respect to the director A,
which is parallel to Z. The other two, P and C, vanish in the
uniaxial phase and are nonzero in the biaxial phase. Of these,
P is a direct measure of the biaxial ordering of the z molecu-
lar axis with respect to the laboratory axes, X and Y, along

which the 1 and 1 directors are parallel. The other biaxial
order parameter C is the difference in the phase biaxiality
observed for the x and y molecular axes. In the limit of high
orientational order, S tends to 1, while C tends to 3, in con-
trast, both D and P tend to zero.

Other letters have been used to denote the four indepen-
dent order parameters constructed as linear combinations of
the principal components of S. This is undesirable as is the
fact that the letters are not related in any transparent manner
to the particular linear combination of S that they denote.
We suggest a solution to this based on the use of Wigner
rotation matrices, D@N(Q), to describe the orientational order
of a biaxial molecule in a biaxial phase. This solution is
based on work by Straley [31], who averaged functions of
the Euler angles, Q(=afBy), to define the four independent
order parameters; these are

S={((3 cos® B—1)/2),
U ={(sin®> B cos 2v)),
T ={((sin® B cos 2a)),

V= <%(1 +cos? B)cos 2a cos 2y — cos Bsin 2a sin 2y>.
(A2)

Another variation of these order parameters has recently
been proposed by Sonnet et al. [32]. Their order parameters
are defined by

S={((3 cos® B—1)/2),

S = %((sin2 Bcos2y)),

= %((sin2 Bcos2a)),

T = <%(1 + cos? B)cos 2a cos 2y — cos B sin 2a sin 2'y>.
(A3)
Both sets of functions are proportional to linear combina-

tions of the second rank Wigner rotation matrices, D,ZM(Q),
defined by
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ITIH(Q) m evenan even{Dmn(Q) + DEZ’H‘Z(Q) + Dfnin(ﬂ)
+ Dfn A}, (A4)

chosen because of the effective D,;, symmetry of the phase
and of the molecules [33]. They are analogous to those de-
fined by Mulder [34] when considering the interaction be-
tween a pair of molecules with D,;, symmetry. Here m and n
are defined to be positive and the four order parameters are

given by
2 2 3
<R00> =S, <R20> = gT,

(R%,) = \/EU, (R3)=VI2,

and evaluation of the direction cosines in terms of the Euler
angles shows that [21]

S=(R5y)

(A5)

D=V6(R%),

_
P=\6(Ry), C=6(R3).

In view of this direct proportionality between the Cartesian
representation of the orientational order parameters and the
averages of the R%, () functions, we suggest that the com-
binations of the principal components of the Cartesian super-
matrix are denoted as follows:

(A6)

_ 5%

2 ZZ ZZ
SO() el SOZ_S -S

yy?

520 _ Sxx _sv

z

$5= (S5 =82 = (55 = 83)). (A7)

These definitions use the letter S to represent the orienta-
tional order parameters as this is already widely adopted
in the field. The superscript 2 denotes the fact that these are
second rank orientational order parameters. The subscripts
have the following meanings: 00 denotes the ordering of
the molecular z axis with respect to Z; 02 indicates the dif-
ference in the ordering of the laboratory Z axis with respect
to the molecular x and y axes; conversely, its laboratory
counterpart, 20 denotes the difference in the ordering for
the molecular z axis with respect to the laboratory X and Y
axes; and finally, 22 indicates the differences in the ordering
of the molecular x and y axes with respect to the laboratory
X and Y axes.

APPENDIX B

The segmental model that we have developed for the
anisotropic potential between two symmetric V-shaped mol-
ecules based on second rank interactions proves to be
equivalent to a single site potential, also of second rank [35].
The demonstration of this is based on a formal, geometric
relationship between the direction cosines occurring in
the segmental pair potential [see Eq. (2)] and those describ-
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ing the orientations of the molecular symmetry axes. Here,
we give an alternative, more physical, derivation which is
readily applicable not only to symmetric V-shaped mol-
ecules, but also to their nonsymmetric analogues that we
have investigated. In the single site model, the anisotropic
pair potential can be written as

Ulj Eu2mn ﬁm(ﬂij)’ (Bl)

where (); denotes the Euler angles relating axis systems
set in molecules i and j [27]. The dependence on the molecu-
lar orientation with respect to the intermolecular vector
has been projected out from the total potential [27]. The
strength of the anisotropic potential is contained in the
expansion coefficients, ¥, , which constitute a supertensor.
In the principal axis systems of the two molecules, there are
just three nonzero coefficients, u¥y), us(=uy,), and us,,
but these can be related by invoking a Berthelot-like com-
bining rule [27]
Uy = (uzpouin)"*. (B2)
The ratio, ub,y/uby,, reflects the relative biaxiality \ of
the anisotropic interactions. This combining rule is consistent
with writing the intermolecular supertensor in terms of
molecular tensors for the individual molecules [27], that is
W = i (B3)
This result certainly holds for anisotropic dispersion forces,
but is more general than this. The biaxiality parameter A may
now be written in terms of molecular quantities as
\ = ity (B4)
As we are considering only single component systems, this
ratio is the same for all molecules, and so the label i will be
removed for the remainder of this appendix. The two com-
ponents of the irreducible spherical tensor are related to
those of the Cartesian tensor by

3
Uy = Euzz

1
Ux = E(”xx - uyy)9

(B5)

and
(B6)

where x, y, and z denote the principal axis system for u,
which is traceless.

The interaction tensor, u,,,, is the tensorial sum of the
segmental tensors u, and ugz, where A and B are the two
arms. We start by evaluating this sum for a nonsymmetric
V-shaped molecule in the arbitrary coordinate system shown
in Fig. 5. Here z is parallel to the arm A, x is orthogonal to z
and in the plane formed by the two arms, and y is orthogonal
to this plane. In this coordinate system, the Cartesian com-
ponents of the total tensor are
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1
5[— s+ up(3sin® 6—1)]

1
0 —E(MA+MB) 0

—up cos fsin 6
2!n

where u, is the Cartesian component of the segmental inter-
action tensor along arm A. These components are related to
the strength parameter of the arm-arm interaction for arms of
type A by

3
UAA = A4 2

= u200=5uA, (B8)

[see Eq. (B3)] with analogous expressions for u*Z and u58.
We see from the matrix in Eq. (B7) that y is a principal axis
of the interaction tensor and that to find the other two prin-
cipal components, it is necessary only to diagonalize a 2
X 2 matrix. This gives the three principal components as

| o ERANC
Uer =7 (g + ) = 3\ wy + up + 4usup| cos 9_5 ’

1
Myy == E(MA + MB)a

1 1 172
U, = Z{(uA +up) + 3(1& + ufg+4uAuB<cos2 6 5)) }

(B9)

The choice of axis labels for the principal components is, in
a sense, arbitrary but we shall follow the convention that
| > |u—uy,| and (u,,—u,,)>0. With the choice made in
Eq. (B9), this would certainly be the case for 6 close to the
extremes of 0° and 180°. The total tensor is traceless [see Eq.
(B9)] and so its irreducible spherical components are

3 1\\ 172
Ung = \/5[(@ +ug) +S(Ltf‘+u129+4uAuB<cos2 60— 5))

and

3 1 172
un=g (up + up) =\ w3 + up + 4uqug| cos® 0—5 .
(B10)

These give the relative biaxiality as

PHYSICAL REVIEW E 72, 051702 (2005)

2

1
E[MA +up(3cos? 6-1)]

1)\
(uy +ug) — <ui + uf; + 4uAuB<cos2 0— 5))

3
A= 2 11\ 12
(up +ug) + 3(14/24 + 14123+4MAMB<(:OS2 0- 5))

(BI11)

and the major interaction parameter, u,q,, as

3
uzoo(Eugo) = 5{(14/4 +ug) + 3(ui + ué +4duup

( s 1))1/2]2
X|cos” 00— — .
2

The phase diagram for this single site model is a unique
function of the biaxiality parameter N and the scaled tem-
perature, kzT/ s [29,30]. Accordingly, the two expressions
for N\ and u,, enable us to relate the phase behavior found
for different parametrizations of the segmental model. Thus,
all of the results should fall on a universal phase diagram
when plotted as kzT/u,q, versus . This biaxiality parameter
is related to the angle between the two arms and their relative
anisotropy € (=up/u,= (€zp/ €44)""?) by [see Eq. (B11)]

(B12)

A
)

B

FIG. 5. The axis system for a nonsymmetric V-shaped molecule,
as used in Appendix B. Note that the definitions of these axes are
different to those used in Fig. 3.
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FIG. 6. (a) The dependence of the composite biaxiality param-
eter A on the interarm angle 0 for a selection of values of the
relative mesogenic anisotropy €. From top to bottom: € =1, \2
\3 2, and \5 (b) The variation of 6 and € needed to achieve the
optimal composite biaxiality for a nonsymmetric V-shaped
molecule.

1 1/2
(1+€)- (1 + e*2+4e*<cos2 60— —))
3 2

A=14/3 12
* sk * 1
(l+e')+3(l+62+4e (0052 0—5))

(B13)

The variation of N with the angle between the two arms
calculated from Eq. (B13) for a selection of the values of the
relative anisotropy is given in Fig. 6(a). For the symmetric
V-shaped molecule (€"=1), \ exhibits a cusp at 90°, but for
all other values of €', the \-@ plot passes through a maxi-
mum when 6 is 90°. All of the curves show the expected
decrease in A as 6 increases from 90° and the molecule be-
comes more linear. The rate at which A decreases is largest
for the symmetric V-shaped molecule. This dependence of \
on € is reduced as € deviates more from unity. The curves
for X shown in Fig. 6(a) reach the value of 1/6, correspond-
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ing to the optimal molecular biaxiality, provided that €' <2
(or equivalently € = ;—); for V-shaped molecules with greater
differences in the anisotropies of the arms, this optimal
value is not attained. The scaled temperature, kpT/uy, 1S
related to T"(=kpT/esy=2kpT/3u%) employed in the
simulations by

k 1 172 -2
2=~ 167" (1+e)+3(1+e +4e<cos 0—2>) )

Ur00
(B14)

The expressions for X and uy [see Egs. (B11) and (B12)]
adopt interesting limiting values. For example, as the angle
between the two arms tends to 0° and 180°, the relative bi-
axiality vanishes and the major interaction parameter tends
to (3/2)(u,+up)*. These two limits are equivalent because of
the segmental nature of the model and the even rank inter-
actions. When the arms are orthogonal, the biaxiality param-

eter is given by
_ \/Ef_
" N2(2-€Y’

and if the arms of the V are equivalent then \ adopts the
value of +/(3/2), which indicates a uniaxial object. The bi-
axiality parameter does not adopt the intuitive value of O
simply because the symmetry axis has not been labeled as
the z axis. In the limit that the anisotropy of one of the arms
vanishes, then € will tend to either O or infinity and in this
limit, the biaxiality parameter will tend to 0 or —4/(3/2), as
expected for a un1ax1a1 object. Perhaps of greater interest is
the case when € tends to 1/2, for then \ tends to 1/V6. This
value corresponds to the most biaxial object and both theory
[30] and simulations [29] agree that the system exhibits a
Landau point at which the isotropic phase undergoes a tran-
sition directly to the biaxial nematic. Of course, the optimal
molecular biaxiality corresponding to the unique value for A
of 1/16 can occur for a range of other combinations of the
relative anisotropy of the arms € and the angle between
them @ and not only the values (#=109.47°, €'=1) and
(6=90°, €'=2) just discussed. The relationship between
these two parameters giving the optimal biaxiality is

(B15)

.1
€ = Z[S -9 cos? 0+ ((5-9 cos® 6)> - 16)"?]. (B16)

However, not all values of ¢ and €' yield the optimal biaxi-
ality A of 1/ V6 and it is possible to find the domains for the
two parameters from the constraints that € must be both real
and positive. This constraint on € gives bounds such that
cos™!(1/3)< @=<cos~!(=1/3); that is, the angle between the
arms of the V must be less than or equal to the tetrahedral
value of 109.47° and greater than or equal to its supplement,
70.53°. At these two extremes, € is unity which corresponds
to the molecular field theory prediction for the Landau point
[4]. In between these two limiting angles, the maximum
value of € is 2, which occurs when the angle between the
arms is 90°, as we have already seen. Given the equivalence
in our model for the interchange of the labels for the two

051702-14



BIAXIAL NEMATIC PHASES AND V-SHAPED...

arms, the optimal biaxiality when #=90° also occurs when
e’“:%. A plot showing the dependence of € on 6 needed to
find the Landau point, determined from Eq. (B16), is shown
in Fig. 6(b). Note that the optimal biaxiality cannot be
achieved for angles larger than the tetrahedral value. This
means that the Landau point cannot be shifted to larger
angles merely by changing the anisotropy of one (or both) of
the arms. The maximum value for € which can yield a Lan-
dau point is 2 and given the symmetry in the model with the
interchange of labels, the minimum is 1/2. As €

PHYSICAL REVIEW E 72, 051702 (2005)

= (€gp/ €44)"%, we note that the relative anisotropy is equal
to the square root of the ratio of the nematic-isotropic tran-
sition temperatures of the two arms. In other words, the two
transition temperatures for the individual arms of the mol-
ecule may differ by up to a factor of 4 and the V-shaped
molecule will still be able to yield a Ng-I transition, depend-
ing on the angle between the arms. This is clearly a large
difference for the transition temperatures and so might offer
considerable flexibility in the design of a V-shaped molecule
with sufficient biaxiality to yield a biaxial nematic.
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